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Introduction

Observation and analysis
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Machine learning History

Supervised learning
Non-supervised learning

Machine Learning

@ Construction and study of systems that can learn from data

@ Main problem: to find patterns, relationships, regularities
among data, which allow to build descriptive and predictive
models.

@ Related fields:

Statistics

Pattern recognition and computer vision
Data mining and knowledge discovery
Data analytics
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Machine learning iy

Supervised learning
Non-supervised learning

Brief history

Fisher's linear discriminant (Fisher, 1936)

Artificial neuron model (MCCulloch and Pitts, 1943)
Perceptron (Rosenblatt, 1957) (Minsky&Papert, 1969)
Probably approximately correct learning (Valiant, 1984)

Multilayer perceptron and back propagation (Rumelhart et al.,
1986)

Decision trees (Quinlan, 1987)

Bayesian networks (Pearl, 1988)

Support vector machines (Cortes& Vapnik, 1995)

Efficient MLP learning, deep learning (Hinton et al., 2007)
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History
Supervised learning
Non-supervised learning

Machine Learning in the news

FEATURE

Google uses machine learning to fil Data analytics driving medical breakthrough:

in the blanks in your spreadsheet

T —_— - o Using big data to save lives ——  MORELIK
e = . : : . 5 Business Analytics Tect
- ] From online dating to driverless cars, Exploit Them

machine learning is everywhere
Dr Michael Osborne from the University of Oxford answers our
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Computers That Learn Like Humans b

Deep learning could transform artificial intelligence. It could also get pretty crecpy.
3y Dana Liebelson | Setember/October 2014 s

CER e e o0 G @ 0 S

P P W Making sense of medical sensors

Computer scientists and electrical engineers are devising a
useful new patterns in data produced by medical sensors.
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Supervised learning
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@ Fundamental problem:
to find a function that
relates a set of inputs
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with a set of outputs
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@ Typical problems:

o Classification ftx)
o Regression
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Machine learning History

Supervised learning
Non-supervised learning

Supervised learning
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with a set of outputs m
@ Typical problems:

o Classification
o Regression
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Machine learning

History
Supervised learning
Non-supervised learning

Non-supervised learning

@ There are not labels for the
training samples

o Fundamental problem: to
find the subjacent structure
of a training data set

@ Typical problems: clustering,
segmentation, dimensionality
reduction, latent topic
analysis

@ Some samples may have
labels, in that case it is
called semi-supervised
learning
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Machine learning

History
Supervised learning
Non-supervised learning

Non-supervised learning

@ There are not labels for the
training samples

@ Fundamental problem: to find
the subjacent structure of a
training data set

Documents Topic proportions and
assignments

Seeking Life’s Bare (Genetic) Necessities \\

@ Typical problems: clustering,
segmentation, dimensionality
reduction, latent topic analysis

@ Some samples may have labels,
in that case it is called
semi-supervised learning
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Machine learning History

Supervised learning
Non-supervised learning

The machine Learning process
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9 Neural Networks
@ Introduction
@ Interactive demo
@ Neural Network Types
@ Neural Network Training
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Neural Networks

Inspired by nature (the brain)

Simple processing units but many of them and highly
interconnected

Distributed processing and memory

Redundant, robust and fault tolerant

Learn from data samples
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Interactive demo

Quick and dirty introduction to neural networks
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Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Qutput Vector

Layer 3
o Feed-forward, multilayer

perceptrons Coyer 2
@ Radial basis function
@ Recurrent <eqe(egeogopoporor oty

o Self-organizing maps

Input Vector
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Neural Networks

Introduction
Interactive demo
Neural Network Types

Neural Network Training

o Feed-forward, multilayer
perceptrons

@ Radial basis function
@ Recurrent

@ Self-organizing maps
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

INPUT LAYER
HIDDEH LAYER

o Feed-forward, multilayer N =@
perceptrons X
@ Radial basis function
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e Recurrent @«‘ \£®
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o Self-organizing maps
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Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Feed-forward, multilayer
perceptrons

Radial basis function

Recurrent

Self-organizing maps

input vector
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Learning as optimization

@ General optimization problem:

min L(f,D),

with H: hypothesis space, D:training data, L:loss/error

@ Squared error:

D — {(Xla t1)7 ceey (Xﬁy t@)}

l
L(fw, D) = E(w,D) =Y |Ifw(x) — till3
i=1
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Other loss functions

@ L1 loss:
’
E(w,D) =Y |lfu(x) — till3
i=1

@ Cross-entropy loss:

L 4

E(w,D) = —In]] p(tilxi, w) = = > [tiln fu(x;) + (1 = ;) In(1 — ¢

i=1 i=1

@ Hinge loss:
¢
E(w,D) = Z max(0,1 — tify)
i=1
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Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Optimization by Gradient descent

1(66,61) «

Wt+1 —_ Wt _ UtvwE(Wt)
OE(w)
ow

VwE(w) =



Introduction

Neural Networks Interactive demo
Neural Network Types
Neural Network Training

Backpropagation [Rumelhart, Hinton, 1986]

o Efficient strategy to calculate the gradient.

@ Errors are back-propagated through the network to assign
"responsibility’ to each neuron (;)

O3 = W30y + Wy

@ Gradient is calculated based on delta values.
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Feature extraction
Feature extraction and Learning Feature learning

Outline

@ Feature extraction and Learning
@ Feature extraction
@ Feature learning
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Feature extraction and Learning Feature learning

Feature extraction
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Feature extraction
Feature extraction and Learning Feature learning

Features

Features represent our prior knowledge of the problem

Depend on the type of data

Specialized features for practically any kind of data (images,
video, sound, speech, text, web pages, etc)

Medical imaging:

o Standard computer vision features (color, shape, texture,
edges, local-global, etc)
o Specialized features tailored to the problem at hand

@ New trend: learning features from data
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Feature extraction and Learning Feature learning

Feature learning
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Feature extraction
Feature extraction and Learning Feature learning

Feature learning

Training ﬁ
=_ [ Feature W :
) Learning » M :

] Class 1
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Application | "l . o

Fabio A. Gonzdlez Advanced machine learning models for NLP




Feature extraction
Feature extraction and Learning Feature learning

Feature learning approaches

@ Unsupervised feature learning
@ Convolutional neural networks

@ Recurrent neural networks
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Feature extraction
Feature extraction and Learning Feature learning

Unsupervised feature learning

hyys(%)

LayerL, Layer Ly

Layer L,
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Feature extraction
Feature extraction and Learning Feature learning

Deep feed-forward neural networks

object models

object parts
(combination
of edges)

pixels
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Feature extraction
Feature extraction and Learning Feature learning

ImageNet 2012 [Krizhevsky, Sutskever, Hinton 2012]

# Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
aMm FULL CONNECT 4Mflop

16M FULL 4096/RelLU 16M
37M FULL 4096/RelLU 37M

MAX POOLING
442k [ CONV 3x3/ReLU 256fm | 74m

1.3M CONV 3x3ReLU 384fm | 2041
884Kk | CONV 3x3/ReLU384fm  149m

MAX POOLING 2x2sub
LOCAL CONTRAST NORM
307K [ CONV 11x11/ReLU256fm | 223m

MAX POOL 2x2sub
LOCAL CONTRAST NORM
35k [ICONV11x11/ReLU96tm | 105\

poding % %

source: ICML2013 Deep Learning Tutorial, Yan LeCun et al.
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Feature extraction
Feature extraction and Learning Feature learning

ImageNet 2012 [Krizhevsky, Sutskever, Hinton 2012]

TASK 1- CLASSIFICATION TASK2 - DETECTION

CNN  SIFT+FV  SVMi  SVM2  NCM NN DPM-SVM1 DPM-SVM2

source: ICML2013 Deep Learning Tutorial, Yan LeCun et al.
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Feature extraction
Feature extraction and Learning Feature learning

Practical considerations

o Traditional backpropagation does not work well with multiple
layers

@ It gets stuck in local minima

@ During the last years several strategies have been
developed/discovered (tricks of the trade):

o Stochastic gradient descent with minibatches and adaptive
learning rate

o Logistic regression/soft max for classification
o Normalization of input variables, shuffling of training samples
e Regularization using L; and L norms and dropout
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Feature extraction
Feature extraction and Learning Feature learning

Implementation

Use of GPUs is mandatory (speed-up > 100x)
Sometimes combined with distributed processing
Practically all the libraries use CUDA

Several higher-level frameworks:

NVIDIA CUDA Deep Neural Network library (cuDNN)
Caffe

Torch

Theano

Blocks

Etc.
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Feature extraction
Feature extraction and Learning Feature learning

( Histopathology basal cell carcinoma

Tumor

Non-tumor
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Feature extraction
Feature extraction and Learning Feature learning

Convolutional Autoencoder for Histopathology Image

Representation Learning

Classification Digital Staining

I . - )

cancer @ () Nomal
Disciinmant Fasiirss k[1.2,3.4]

61,[1,2,3,4] ,
“ " (Spatial-class Weights)

et e B ole)

Pooling Layer - -
O O (average pooling) Q \)

<«— Convolutional Layer — —
(Feature maps)

Features
(Visual Weights),

==
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4) Visual Interpretable
Prediction

3) Automatic Detection of
Basal-cell Carcinoma
(soft-max classifier)

2) Image Representation
(Convolutional Auto-Encoder)

1) Unsupervised Feature
Learning
Histopathology Images
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Feature extraction
Feature extraction and Learning Feature learning

Digital staining results

’ Cancer ‘ Cancer ‘ Cancer ‘ Non—cancer‘ Non-cancer ‘ Non-cancer

Cancer Cancer Non-cancer Non-cancer Non-cancer

0.9604 0.7944 0.2763 0.0856 0.0303

o

™

A\
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Feature extraction
Feature extraction and Learning Feature learning

TICA learned features )

i
I B ERIFER ST,
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Feature extraction
Feature extraction and Learning Feature learning

Feature learning for natural language data

@ But what about text?
@ Neural networks are a hot topic in NLP now a days:

e “NN language models and word embeddings were everywhere
at NAACL2015 and ACL2015" C. Manning.
e Many successful applications:

Speech recognition
Language modeling
Translation

Image captioning
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Outline

e Learning Word Embeddings
@ Word embeddings
@ Word2vec
@ Interactive Demo
@ Resources
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Bag-of-words and one-hot representation

o Bag-of-words representation: a document is represented by
the frequency of the words in it:
the dog a «cat chases jump tails

([t fof1r[ 1 [ o o]
o If we apply this representation to a word, we get a one-hot
vector:

chases]O\O\O\O\l\O\O‘

tails [0O]O0[O0[0[O0]O]1]
@ Problem: vectors for different words are orthogonal even if the
words are related
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Word embeddings
Word2vec
Interactive Demo
Learning Word Embeddings Resources

Distributed word/document representation

@ Words are represented by continuous vectors:

chases [ 0.1 [ 0.3 [ 03] 0.0 [ -0.8]0.7 [ 0.0 |

tails ] 0.2 \ 0.3 \ -0.4 \ 0.1 \ -0.7 \ 0.8 \ 0.0 \
@ Question: how to build this kind of representation?
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Distributional Hypothesis.

@ “Words that are used and occur in the same contexts tend to
purport similar meanings.”
government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

e Compositional distributional models:
the meaning of a sequence of words is represented by the
combination of the vectors of the words within the sequence

f(‘the dog chases the cat’) = f(‘the’)+f(‘dog’)+- - -+f(‘cat’)
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Neural Net Language Model

. input projection hidden output
@ Problem: predict the next — —

word given the previous 3 wit-3)
words (4-gram language .

model) it ] B
@ The matrix U corresponds g - ‘H % U b

to the word vector f'

. =1 \u/
representation of the words. ““"| | ¥

w(t)

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic
language model. The Journal of Machine Learning Research, 3, 1137-1155.
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

word2vec

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. In Proceedings of
Workshop at ICLR, 2013.

@ Neural network architecture for efficiently computing
continuous vector representations of words from very large
data sets.

@ Proposes two strategies:

o Continuous bag-of-words
o Continuous skip-gram
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Continuous bag-of-words

Input projection  output
w(t-2)
@ Problem: predict a word
given its context. wit1) UM
- \
@ All the words in the context q Wit
use the same codification. «
y
@ The representation of the /
words in the context are W(tH)
summed (compositionality).
w(t+2)
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

CBOW detail

Input layer

[TeXeXe]|

[e]

X1k

[~

=
X
2

Output layer

O == 000]
/

% CxV-dim
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Skip-gram

Input projection output
w(t-2)
) w(t-1
@ Problem: predict the d 0
context given a word
. wit) | ——
@ All the words in the context
use the same codification.
Q| w(t+1)
< w(t+2)
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Word embeddings
Word2vec

Interactive Demo
Learning Word Embeddings Resources

Efficient implementation

@ Soft-max output:

@ To calculate the denominator you have to add over the whole
vocabulary. Very inefficient!

o Strategies:

o Hierarchical softmax
o Negative sampling
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Word embeddings
Word2vec

Interactive Demo
Learning Word Embeddings Resources

Hierarchical softmax

n(w27 1)

W, W, wy owy, Wil My
L(w)-1

pw=wo)= ] o([n(w.j+1) = ch(n(w, )] Vo )h)
j=1
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Word embeddings
Word2vec
Interactive Demo
Learning Word Embeddings Resources

Interactive demo

Playing with word2vec
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

@ Bengio, Yoshua, et al. "A neural probabilistic language model.” The Journal of
Machine Learning Research 3 (2003): 1137-1155.

@ Bottou, Léon. "From machine learning to machine reasoning.” Machine learning
94.2 (2014): 133-149.

@ Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a
simple and general method for semi-supervised learning.” Proceedings of the
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@ Collobert, Ronan, et al. "Natural language processing (almost) from scratch.”
The Journal of Machine Learning Research 12 (2011): 2493-2537.

@ Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in
Continuous Space Word Representations.” HLT-NAACL. 2013.

@ Mikolov, Tomas, et al. "Efficient estimation of word representations in vector
space.” CoRR2013. arXiv preprint arXiv:1301.3781 (2013).
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

@ Socher, Richard, et al. "Zero-shot learning through cross-modal transfer.”
Advances in neural information processing systems. 2013.

@ Zou, Will Y., et al. "Bilingual Word Embeddings for Phrase-Based Machine
Translation.” EMNLP. 2013.
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embeddings.” Proc. NAACL. 2015.
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unified multilingual semantic representation of concepts.” Proceedings of ACL,
Beijing, China (2015).
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Explanation of the Mysteries of Semantic Word Embeddings.” arXiv preprint
arXiv:1502.03520 (2015).
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Word embeddings

Word2vec

Interactive Demo
Learning Word Embeddings Resources

Other resources

o Blog: Deep Learning, NLP, and Representations,
http://colah.github.io/posts/2014-07-NLP-RNNs-
Representations/

@ Software: GloVe: Global Vectors for Word Representation,
http://nlp.stanford.edu/projects/glove/

e Software: Gensim, topic modeling for humans,
https://radimrehurek.com/gensim/

e Software: word2vec, https://code.google.com/p/word2vec/
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Recurrent neural networks

Long short-term memory networks
Variants

Interactive Demo

Some applications

Language modeling with recurrent neural networks Resources

Outline

e Language modeling with
recurrent neural networks
@ Recurrent neural networks
@ Long short-term memory
networks
@ Variants
@ Interactive Demo
@ Some applications
@ Resources
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Recurrent neural networks
Long short-term memory networks
Variants
Interactive Demo
Some applications
Language modeling with recurrent neural networks Resources

Recurrent neural network

@ Neural networks with memory

o Feed-forward NN: output
exclusively depends on the current
input

@ Recurrent NN: output depends in

current and previous states %

@ This is accomplished through
lateral /backward connections
which carry information while
processing a sequence of inputs

(source: http://colah.github.io/posts /201508
Understanding-LSTMs/)
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Recurrent neural networks
Long short-term memory networks
Variants
Interactive Demo
Some applications
Language modeling with recurrent neural networks Resources

Character-level language model

target chars: ‘e’ 2 & “o"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
output layer 30 e i i
4.1 1.2 -1.1 2.2
T e
0.3 1.0 0.1 |w hh|-0-3
hidden layer | -0.1 03 05— 0.9
0.9 0.1 -0.3 0.7
x x T TWﬁxh
1 0 0 0
i 0 1 0 0
input layer 0 5 p ;
0 0 0 0
input chars:  “h” “e” “ “p

(source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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Recurrent neural networks
Long short-term memory networks
Variants
Interactive Demo
Some applications
Language modeling with recurrent neural networks Resources

Sequence learning alternatives

one to one one to many many to one many to many many to many

o B .
HH O OO0 (MK
0 0 Oood oon oo

(source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

4
|

—
|

L

|

||
e
e
|
|—|
S
s
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Recurrent neural networks
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Network unrolling

A
1 P
SO - W Si-1 _ - OSHI -
:> - W %X W T W
X

Unfold 1
U U U
xf

-1 t t+1

w
-

®

(source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnnsy,)
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Backpropagation through time (BPTT)
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(source: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-
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BPTT is hard

@ The vanishing and
the exploding
gradient problem

e Gradients could
vanish (or explode)
when propagated
several steps back

@ This makes difficult
to learn long-term
dependencies.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training Recurrent Neural
Networks. Proc. of ICML, abs/1211.5063.
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Long term dependencies

® ®
I
Yy y—
(%3

(source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Long short-term memory (LSTM)

Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory.” Neural
computation 9, no. 8 (1997): 1735-1780.

@ LSTM networks solve the problem of long-term dependency
problem.

@ They use gates that allow to keep memory through long
sequences and be updated only when required.
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Conventional RNN vs LSTM

1 t
N
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(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Forget gate

@ Controls the flow of the
previous internal state
Ce1

o f; =1 = keep previous
state his

e f = 0 = forget previous
state

Tt

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Input gate

@ Controls the flow of
input information (x)

@ iy =1 = take input into VB
account -

@ iy = 0 = ignore input

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Current state calculation

Cia

fi it a Ct = ft * Ct—l + it * C’t

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Output gate

@ Controls the flow of
information from the
internal state (x;) to the
outside (h)

@ o; = 1 = allows internal

state out het

@ 0; = 0 = doesn’t allow J,[
internal state out

(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Peephole connections

ft = U(Wf'[Ct—l,htfhxt] + bf)
iy =0 (Wi [Ce—r,hi—1,2¢] + b;)
1] or =0 (W [Cy, hi—1,2¢] + bo)

Gers, F., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Neural
Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International

Joint Conference on (Vol. 3, pp. 189-194). IEEE.
(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Gated recurrent units

hii RYIN 2t =0 (Wz ' [htflvxt])
Tt =0 (Wr : [ht—laxt])

;Lt = tanh (W : [Tt * ht—la wt])

ht:(l—zt)*htfl—‘rzt*ilt

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078.
(image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Interactive demo

Language modeling with LSTM
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The Unreasonable Effectiveness of Recurrent Neural
Networks

e Famous blog entry from Andrej Karpathy (UofS)

@ Character-level language models based on multi-layer LSTMs.
e Data:

Shakspare plays

Wikipedia

IATEX

Linux source code
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Algebraic geometry book in ATEX

have to show that

0o, = Ox(£)

have
Ox(F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof.

¢ Spaces, Lemma ?2

cove
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY 5Y 3Y Y xxY 5 X.
be a morphism of algebraic spaces over S and Y.

ro schen
-module

Proof. Let X be a nonz
si-coherent sheaf of O

The following are equivalent

an algebraic space over S.
s an affine open covering,

finite type.

Proof. This is an algebraic space with the composition of sheaves F on Xepare we

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
ng. Let U C X be a canonical and locally of finite type. Let X be a scheme.

f X. Let X be an algebraic space. Let F be a

Consider a common structure on X and X the functor Ox (U) which is locally of
o

Proof. Omitted. ja | This since F € F and z € G the diagram
3
Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We l

o Spec(Ky) Morses  d(Oxe,.6)
a finite type and

is a limit. Then G
type f.. This is of fi
o the composition of G
o O is a sheaf of rings.

e type d

Proof. We have sec that X
algebraic space. The property F
cohomology of X is an open neighbourhood of

Proof. This is clear that G is a finite presentation, see Lemmas

field

Oxz— Fr -UOxpur) =
is an isomorphism of covering of Ox,. If F i the unique el
is an isomorphisi.

0310x,(0%,)

presentations of a scheme Ox-algebra with F are opens of finite type over S.

If F is a scheme theoretic image points.

sequence of F is a similar morphism.

Sisa flat and F and G is a finite

o

Spec(R) and F is a finite type representable by
a finite morphism of algebraic stacks. Then the
[=]

A reduced above we conclude that U is an open covering of C. The functor F is a

ient of F such that X

The property F is a disjoint union of Proposition ?? and we can filtered set of

If F is a finite direct sum Ox, is a closed immersion, see Lemma ?2. This s a
I

(source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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Linux source code

/*
* Increment the size file of the new incorrect UI_FILTER group information
* of the size generatively.
*/
static int indicate_policy(void)
{
int error;
if (fd == MARN_EPT) {
/*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem_total)
unblock_graph_and_set_blocked() ;

else
ret = 1;
goto bail;
}

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf [i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}
}

io A. Gonzalez Advanced machine learni
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Image captioning

bouquet of bottle of water  glass of water with
red flowers ice and lemon

dining table
with breakfast
items

plate of fruit

banana
slices

fork
a person

sitting at a
table

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignmeats, for
generating image descriptions.” CVPR2015. arXiv preprint
arXiv:1412.2306 (2014).

Fabio A. Gonzélez Advanced machine learning models for NLP




Language modeling with recurrent neural networks

Approach

Recurrent neural networks
Long short-term memory n
Variants

Interactive Demo

Some applications

Resources

Dataset of images and sentence descriptions
training image

“A Tabby cat is leaning
on a wooden table, with
one paw on a laser
mouse and the other on
a black laptop”

training image

Inferred correspondences

test image

“Tabby cat is leaning”|
“laser mouse”

"pa w”

“black laptop”

Generative model

‘office telephone
“shiny laptop”

“Tabby cat is sleeping
‘wooden office desk
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Image-sentence score model

image - sentence score Si;
* sum

L[ ]
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Image-sentence score model

@ A. Karpathy, A. Joulin, and L. Fei-Fei. Deep fragment embeddings for
bidirectional image sentence mapping. arXiv preprint arXiv:1406.5679, 2014.

Sk/ = Z Z max(O, V,-Tst)

teg icgy

o Simplification:

@ Loss:

CO) =" | max(0,Su — Sk + 1) + Y _ max(0, Spes=Skk +1)
k i i
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Multimodal RNN

START “straw” “hat”
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Alignment results

0.41 person 1.31 dog
0.61 rides 0.31 plays
3.34 clephant 0.45 catch

-0.06 past -0.02 with

0.21 shop 0.25 white
1.62 ball
-0.10 near
-0.07 wooden

0.22 fence
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Captioning results

man in black shirt is playing guitar. construction worker in orange safety two young girls are playing with lego
vest is working on road. toy.

io A. Gonzalez Advanced machine learni
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Papers (1)

o General:
@ S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735-1780, 1997. Based on TR FKI-207-95, TUM
(1995).
@ J. Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural
Networks, Volume 61, January 2015, Pages 85-117 (DOI:
10.1016/j.neunet.2014.09.003)

@ Language modeling:

@ Mikolov, Tomas, et al. "Recurrent neural network based language model.”
INTERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan, September
26-30, 2010. 2010.

@ Mikolov, Tom3s, et al. "Extensions of recurrent neural network language
model.” Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on. IEEE, 2011.

@ Sutskever, llya, James Martens, and Geoffrey E. Hinton. "Generating text
with recurrent neural networks.” Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 2011.
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Papers (2)

@ Machine translation:

@ Liu, Shujie, et al. "A recursive recurrent neural network for statistical
machine translation.” Proceedings of ACL. 2014.

@ Sutskever, llya, Oriol Vinyals, and Quoc VV Le. "Sequence to sequence
learning with neural networks.” Advances in neural information processing
systems. 2014.

@ Auli, Michael, et al. "Joint Language and Translation Modeling with
Recurrent Neural Networks.” EMNLP. Vol. 3. No. 8. 2013.

@ Speech recognition:

@ Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition
with recurrent neural networks.” Proceedings of the 31st International
Conference on Machine Learning (ICML-14). 2014.
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Papers (3)

@ Image captioning:

@ Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for
generating image descriptions.” CVPR2015. arXiv preprint
arXiv:1412.2306 (2014).

@ Vinyals, Oriol, et al. "Show and tell: A neural image caption generator.”
CVPR2015. arXiv preprint arXiv:1411.4555 (2014).

@ Chen, Xinlei, and C. Lawrence Zitnick. "Learning a recurrent visual
representation for image caption generation.” arXiv preprint
arXiv:1411.5654 (2014).

@ Fang, Hao, et al. "From captions to visual concepts and back.”
CVPR2015, arXiv preprint arXiv:1411.4952 (2014).
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Other resources

@ Christopher Olah, Understanding LSTM Networks,
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
@ Denny Britz, Recurrent Neural Networks Tutorial,

http://www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns/

@ Andrej Karpathy, The Unreasonable Effectiveness of Recurrent
Neural Networks,
http://karpathy.github.io/2015/05/21 /rnn-effectiveness/

@ Jiirgen Schmidhuber, Recurrent Neural Networks,
http://people.idsia.ch/~juergen/rnn.html
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Thanks!

fagonzalezo@unal.edu.co

http://www.mindlaboratory.org
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